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ABSTRACT

Discreté approximation schemes for the solution of nonlinear hereditary
control problems are constructed. The metﬁods involve approximation by
a sequence of optimal control problems in which the original infinite
dimensional state equation has been approximated by a finite dimensional
discrete difference equation. Convergence of the state approximations is
argued using linear semigroup theory and is then used to demonstrate that
solutions to the approximating optimal contrcl problems in some sense
approximate solutions to the original control problem. Two schemes, one
based upon piecewise constant approximation, and the other involving spline
functions are discussed. Numerical results are presented, analyzed and used
to compare the schemes to other available approximation methods for the

solution of hereditary control problems.
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1. Introduction

The purpose of this paper is two—fold. It first serves to describe
how the abstract approximation framework developed for the ihtegration’of
linear funétional differential equation (FDE) initial value problems in
[24] can be extended so as to be applicable to certain nonlinear problems
as well., Secondly, the application of the resulting approximation schemes
to the generation of approximate solutions to optimal control problems in
which the dynamics of the underlying system are governed by .nonlinear FDE
is discussed.

The approach we take is not new. We consider the nonlinear FDE in
an equivalent form, i.e., as an implicit abstract evolution equation in an
infinite dimensional Hilbert space Z. We then construct a sequence of
finite dimensional approximating discrete difference equations by approximating
the solution semigroup of operators (and its infinitesimal generator) defined
by the linear part of the equation using plecewise constant or spline based
subspaces of Z . Linear Semigroup Theory and discrete analogs of the
Trotter-Kato Theorem [18] and the well-known Gronwall inequality are then
used to argue convergence. Approkimate solutions to the optimal control
problem are generated by considering a sequence of approximating optimal
control preblems in each of which the infinite dimensional FDE state
equation hasAbeen approximated in the spirit of the discussions abové.
Using the fact that the state approximations converge, we afe then able to
demonstrate thac solutions to the approximating optimal control problems
(which can be solved by conventional methods) in some sense approximate
solutions to the ofiginal control problem.

Banks and Burns [3][4] were among the first to propose the idea of
approximating hereditar& control problems by a sequence of finite dimensional

approximating control problems. The semi~discrete methods for problems with



linear state equations which they developed were laier extended by

Banks [2] so as to be applicable to nonlinear problems as well. Using
similar approaches, Reber [21] and Rockey [23] developed fully discrete
schemes for the approximation of FDE which they then applied to the

solution of control problems. Reber developed first order convergent
schemes for linear non-autonomous equations. 1In the constant coefficient
case, his work becomes a special case of the more general theory tg be
presented below. 1In [23], the linear or non;inear FDE is firsf recast

as an equivalent Volterra integral equation in L2 . and 1s then discretized
using pliecewise constant or spline subspaces. An algebraic system for the
Fourier coefficients of the solution results which is then solved using
standard methods. Récently, within the context of the framevwork developed
in 3], Gibson [13] and Kunisch [20] have formulated semi~discrete approxi-
mation schemes which yield approximating closed loop sociutions to the linear
quadratic control problem with hereditary system dynamics.

The discussion of our results below closely parallels the presentation
in [2]}. The treatment in [2] relies heavily upon the limear theory developed
in [3] and [4] by considering the nonlinearities (which are assumed to
satisfy local Lipschitz and affine growth conditions) to be a perturbation
of the linear part of the equation. Since the basis for our approximation
schemes involves the approximation of the solution semigroup eAt using
rational function approximaticns to the exponential and finite dimensional
approximation of A, we too depend heavily upon the linear theory, and
hence consider precisely the séme class of equations which are studied in
[2]. An unfortunate consequence, however, is that this precludes the-

inclusion of 'monlinearities in the discrete delay terms {i.e. terms of



the form x(t-r)). This is in contrast to the work of Kappel and Schappacher
[l7]_and Kappel [16] and the recent paper by Damiel [10] in which the non~
linearities in the equation are handled more‘directly and whiéh do permit
discrete delay terms to enter into the equation in a nonlinear fashion. The
convergence arguménts for the approximation schemes developed in [16] and
[17] are based largely on ideas from nonlinear semigroup theory and
approximation results analogous to thosa used‘in the linear case. Daniel,
on the other hand, avoids the semigroup approach entirely and relies instead,
directly upon the dissipative properties of the nonlinear operators arising
in the abstract formulation of the FDE in order to argue the convergence
of spline based semidiscrete approximation schemes. These results are
obtained, however, at the expense of requiring somewhat stronger assumptions
{global Lipschitz and additional smoothness) on the nonlinearities in the
equation and the placement of additional restrictions on the class of
admissible controls.

We conclude tﬁis section with an outline of the rest of the paper and
a brief description of our notation, In Section 2 we define the nonlinear
FDE with which we shall be concerned and stateyiée hypotheses it must'satisfy
in order for us to carry out our analysis. We also state fundamental
existence and uniqueness results and describe the equivalent formulation
of the FDE as an abstract evolution equation in the Hilbert space Z . 1In
Section 3 we first recall the abstract approximation results for linear
equations discussed in [243. We then extend them so that they are applicable
to the nonlinear equation as well and state andvprove the fundamental
convergence result, In Section 4 we briefly describe the details involved

in the construction of actual schemes to which our general convergence



¢ ORIGIMAL PAGE I8
OF POOR QUALITY

. regults apply. We also outline tweo specifi;z: scheﬁ;eg, one using piecew»isez
constant functions and the other using splines; Section 5 contains g;;
results pertaining to the application of tﬁe approximstion schemes to the
solution of optimal control problems while in Section 6 we demonstrate
the feasibility of our methods by presenting and analyzing several numerical
exaﬁples.

The notation ve use, is, for the most part, standard. The superscripts
on the Lebesgue spaces L:(a,b), the space of functions with p continuous
derivatives C:(a,b) and the Sobolev spaces H:(a,b) denote that they
consist of functions (or equivalence classes of functions) definéd on

(a,b) with range in R® . The symbol Lloc is used to denote the class

‘o0
of functions which are loczlly essentially boundéd. The space of continucus
functions from an interval _(a,b) with range in the abstract space 2 1is

denoted by C([a,b],Z). We assume that this space is endowed with the usual
supremum norm. For a linear operator A and a complex number A contained

in the resolvent set of A we denote the resolvent of A at A by

R(X;A).

2. Nonlinear Hereditary Control Systems and Their Abstract Formulation

In this paper we consider nonlinear hereditary control systems which
are governed by functional differential state equations of retarded type

of the form
(2.1)  &() = Lx_+ £(6,x(0),x,,u(6) t e [0,T]
with initial conditions given by

(2.2) x(0) = n X, = ¢
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where n e R%, ¢ ¢ Lg(—r,O) and x_ denotes the function on [-r,0]
defined by xt(G) = x(t4+0), -r £ 6 € 0. The linear part of the equation,
given by the linear operator L:Lg(—r,O) + R® will be assumed to be of the

form

: 0
Ajd>(-Tj) + J A(6)9(6)ab

-r

j=0

where the Aj are nxn matrices, A(*) 1is a square integrable nxn matrix

valued function defined on the interval (-r,0) and O = T < T < TZ...< Tv =T,
Strictly speaking, L¢ is not well defined for all ¢ e Lg(—r,o) in that

point evaluations of ¢ are requived. We remedy this situation by in#uring

that in any instance in which the operator L appears below, either it is

being applied to an element in Lg(-r,o) for which the value of L$ is

well defined, or L¢ appears either explicitly or implicitly benéath an

integral sign in a reference to x, the solution to the initial value

problem (2.1)(2.2) above.

In addition, we assume that the nonlinear perturbation term

f:RlXRnXL;(—r,O)XRm + R?  satisfies the following hypotheses

(u1) The mapping {t,n, ¢,v) + £{(t,n,¢,v)

is continuous on RlXRnXL2(~r,0)me

(H2) For any bounded subset D of RnXLg(—r,O)

loc
there exist m, = mi(v), m, € L

[

i=1,2
such that for v ¢ R@, t ¢ R} and (M,9),(Ed) ¢ D

one has : T

1ECen,0,v) = £(6,E,4,W | < {my ()4my (0) [v[Hfn-g [+ -y |}
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(Hﬁ) There exists a continuous nxm watrix valued mapping ¢t =+ B(t)

1

such that £(t,0,0,v) = B(t)v for all t ¢ R* and v ¢ R". 1In

addition there exist functions ﬁi € Li?c i = 1,2 such that
[£¢t,n,0 , v) [s{a (£) +a, (e) [v[H |n]+ [¢]}+ [B(e) ||v]
1 .
for all t e R, v e R® and all Mm,$) e Rn¥L;(—r,0) with

l(n,¢)'2==lﬂl24-l¢]2 sufficiently large.

(H4) There exists a continuous function g:RlXRnXLg(-r,O) g Rl such that
[£Ct,n,0,v) - £(t,n,6,w) | s g(t,n,0) |v-w]

for all t ¢ Rl, Ne Rn, ¢ € LZ(—r,O) and v,w € Rm.

Hypotheses (H2) and (H3) together yield the followimg growth condition

satisfied by f:

(G) There exist functions ﬁl,ﬁz € Li?c such that

[€Ce,n,0,9) | e (B (£)+, () |v]} Lin] + [¢]}+ B(e) | |v]
for all t ¢ R;, ne Rn, ¢ € Lg(—r,O) and v ¢ Rm.

A solution x(t) = x(t;n,¢,u) to (2.1)(2.2) 1is defined to

be a function x € Lg(—r,T) such that the mapping t + x(t) 1is absolﬁiely
continuous on (0,T), (2.1) is satisfied a. e. on (0,T) and for which
x(0) = n X = ¢ . Using standard arguments, the followimg existence,
uniqueness and continuousbdependence result for solutions fo the initial

value problem (2.1) (2.2) can be established.

Theorem 2.1 Under hypotheses (H1) - (H4), given u ¢ ﬁ;{O,T) and

(n,9) € RnXH?(—r,O) with n = ¢(0), there exists a unique solution_to the
initial value problem (2.1)(2.2) on [0,T]. Moreover, the mapping .

(6,u) + (x(t;0(0) ,¢,u),xt(¢(o),¢,u))' from H} (-r,0) x13(0,T) into R"™XL)(-r,0)

wheie x 1s the unique solution to (2.1)(2.2) corresponding to uc L?(O,T)
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and x{(0) = $(0), Xy = $, 1is continuous with respect to the topology on
H;(—r,O)XLg(O,T) induced by the supremum norm on H?(—r,o) and the standard
L2 norm on L;(O,T). -

Fundamental to the development of our approximation schemes below will
be the equivalence which exists between the FDE initial value problem

(2.1)(2.2) above and an abstract evolution equation set in the Hilbert space

Z = R™L2(-r,0) with inner product <#,e>, = <o o> 4 <s, o> .
2 4 n n
R 7.2(—1',0)

Tor each t 20 let S(t):Z +> Z denote the solution operator for the
assoclated linear homogeneous initial value problem correéponding to (2.1)

(2;2). That is, for (n,¢) € Z we have

S(ey(n,¢) = (x(t),x))
where x is the unique solution to (2.1)(2.2) with £ = 0. Based upon
existence, uniqueness and continuous dependence results for the linear
homogeneous problem (see [3][41[24]) one may conclude that {S(t):t20}
represents a parameterized family of well defined bounded linear transform—
ations forming a Co—semigtoup of operators on Z. The infinitesimal
generator of {S(t):t20) , A, and its domain of definition D(A) may

be calculated and are given by

DA) = {(n,9) € 2:1=6(0},¢ ¢ H) (-1,0) }

A9(0),9) = (L, ).
If we define the inner product <',~>8 on Z by
0
<(n,¢),(€ﬁo>g = nTE + _J ¢(6)Tw(6)g(9)d9

-r

where
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< TV
g(0) =

cew PO
i
o~
A
[eo]

<
-3
A
@
A
(o

then it clearly follows that for (n,¢) € Z
Hnof, < joel, s Alnol, .

Furthermore, it can be shown that the operator A satisfies the following

dissipative inequality with respect to the g 1inner product:

(2.3 < Azo,zo>g < w <z0,zo>g
Vil pd 2 0 2
with w = —=+ [A | +1/2 ) |a |"+ 1/2 | |a(8)|%a8
2 0 Lo 18y
i=1
-r
and .hence A € G(/V,w) -- that is, the semigroup of operators {S(t):t 20}

satisfies the exponential bound given by
HOIERD] T,

Let NI:Z + R®  and HZ:Z - Lg(-r,ﬂ) denote the two coordinate projections
of Z onto R and Lg(-r,o) respectively. That is for (n,¢) € Z, we

have

mM,¢) = n  m(n,¢) = 9.
Let the mapping F:RleXRm + Z be defined by

F(t,z,v) = (f(t,m z,m

1 ZZ,V),O).
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Hypotheses (H1l)~(H4) imposed upon f naturally imply that the mapping F

defined above will have the following properties:

(P1) For any z ¢ C([0,T],2) and u ¢ L?(O,T), the mapping

€ » |F(e,2(),u()) | 1s in L3(0,D).

(r2) For any hounded subset P of Z, there exist M {depending

1M

on D) in Lloc such that IF(t,z,v) - F(t,w,v)! <

[}

{Ml(t) +M2(t)|vi} |z-w| for all z,weD , teR' and ve R

For zo

implicitly by the following expression

€Z and U e L?(O,T), let the mapping z:[0,T] + Z be defined

t
(2.4) z(t) = z(:;zo,u) = S(c)z0 + j S{(t-0)F(o,z(0),u(0))do .
0
Using hypotheses (H1)~(H4) and properties (P1l) and (P2) above together

with standard arguments involving Picard iterates and the Gronwall inequality,

Banks [2] is able to establish the following lemma.

Lemma 2.1 Under hypotheses (H1)-(H4), equation {2.4) above, defines for
each zg € Z and u e Lg(O,T) a unique function t =+ z(t;zo,ﬂ) e Co,11,2).
Moreover, the mapping (¢(0),¢,u) + z(t,($(0),d),u) Is coatinuous on

D(A)me(O,T) with respect to the 2ZxL, and ROx% L topologies.
2 2

2

Finally, using the above results, the equivalence which we desire between
the FDE initial value problem (2.1)(2.2) and an abstract evolution equation

set in Z, in particular the system given by (2.4),>can be established.
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Theorem 2.2 For £ satisfying hypotheses (H1)-(H4), zy = ($(0),5) € D(A)

and u € L?(O,T) we have

2.5} z(tszy,w) = (x(t;¢(0) ,¢,U),xt(¢(0),¢,11)) t ¢ [0,T]
where z(t;zo,u) is thL. unique solution to (2.4) guaranteed to exist by
Lemma 2.1 and x(t;$(0),$,u) is the unique solution to the FDE initial

value problem (2.1)(Z.2) guaranteed to exist by Theorem 2.1.

We shall only briefly outline the essential aspects of the arguments
necessary to verify Theorem 2.2. The details of the préof_can be found
4in [2]. The equivalence described by (2.5) is first established on a
restricted class of initial data zo and input functions u . For

($p(0),9) € Z with ¢e C?(—r,O) and u € Cm(O,T) it can be shown that
w(t) = (X(t;¢(0),¢,u),xt(¢(0),¢,u))

is the unique strong solution to the avstract evolution equation in 2

given in differentialed form by

]

(2.6) y(t) = Ay(t) + F(t,y(t),u(t))

R’

(2.7) y(0) = (4(0),¢)

However, it can also be shown that any strong solution of (2.6) (2.7)

corresponding to -¢ € C?(—r,O) and u € Cm(O,T) must satisfy

t
y(t) = S(t)y(0) + j 5(t~-0)F(a,y(0),u(0))do
0

‘and hence by Lemma 2.1 must be the unique solution in C([0,T]},2) of (2.4).
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Therefcre, we have that

2(t,(¢€0),9),w) = w(t) = (x(t,9(0),9,u),x ($(C),,u))

With the desired equivalence now established for ¢ ¢ c?(—r.O) and

X
u € Cm(O,T), it is easily extended to the more general elass of in“tial
data and input functions described in the statement of the theorem througl

the use of the continuous dependence results given in Theorem 2.1 and

Lemma 2.1 together with standard density argumeats.

3. An Abstract Approximation Framework

In this section we develo” an abstract approximation framework rnder
which approximation schemes applicable to the abstract evolution ecuation
given by.(2.4) can be constructed. 1In addition, we establish conditions
which ave suificlent to conclude convergence of s:hemes constructed within
the framework. The approach we take is based upon, and an extcnsio. of,
the discrete approximation framework for the integratiom of linecar FDE
initial value problems described in [24]. ‘Indeed our schemes will b based
upon the approximation of the semigroup of operators 15(t):t>0} definca
on Z by a s2quence of discrete semigroups (see [18]) which are defined on
finite dimensional approximating subspaces of 7 aund whkich are constructed
using rationél function approximatiors to the exponentizl ond finite
dimensional approximations to the infinitesimal generater A of {S(t):t =20},
The fundamental convergence results for these constructions «re given in
Theorem 3.1 to follow gnd are used extensively throughowt our discussions

below.
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For each N = 1,2... let ZN be a finite diﬁénsional subspaée of 2

of dimension kﬁ and let P :Z *-ZN be the associated orthogonal (not

N

necessarily with respect to the standard inner prcduct on Z ) projection

of Z onto 2Z_. Define A :2 =2 to be a bounded linear operator on
N Aut N N N :

ZN and let SN(t) =@ ° for all ¢t 2 0.

Theorem 3.1  Suppose

(1) PNz +2z as N+ ® foreach ze¢ Z

(2) There exist constants M,B, independent of N for which

A,AN € G(M,B), N=1,2... (i.e.

Is(t)| < MeBt,]SN(t)I < uePt N=1,2...)

(3 There exisﬁs chD(A), a dense subset of Z for which
|AgPyz-Az| > 0 as N+ for each z ¢ D,

(4) There exist Ae C with ReA > B and D " a dense subset of Z

2

for which R()\;A)D2 =D,

(5) C(z) 1is a rational.function of the complex variable z for which

(@ ez - €| = o(|z]%Y)

as |z| + 0 with q >0
(b) if C(z) = n(z)/d(z) then
degree C(z) = degree n(z) - degree d(z) < q + 1
(c) C(z) has no poles in {zeC:Rez<0}
e = r X -1 . €4
Then the operators = C( N) n(NAN)d(N AN) exist for all N sufilciently

large. If, in addition, for pN » that positive integer for which

pﬂ~§ £ 7T« (pNi-l)ﬁ , we have that the infinite collection of operators
‘k Lo
on ZN’ {C(% AN) }DN are uniformly bounded with respect to N then
k=0
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N .
(3.1) lc( AN) Pyz - S(tk)zl + 0
ag N -+« for each 2z ¢ Z uniformly in k, k = 0,1,2...”N where
N = —E ' =
tk k N k 0’1‘2"'p? .

Theorem 3.1 is based primarily upon a result due to Hersh and Kato [14]
and is in fact a fully discrete analog of the well known Trotter—-Kato
results which are commonly used in establishing the convergence of semi-
discrete approximations to semigroups of operators (see [18]). That it is
possible to actually construct schemes (i.e. ZN’ PN’ AN,C(z)) which

satisfy the hypotheses of Theorem 3.1 is exhibited in the next sectio. .

Remark 3.1 As a corollary to Theorem 3.1, it is pqssible to estimate the
rate of convergence in (3.1); Indeed if for 2z € S, a particular subset

of Z which is defined in Theorem‘4.17 of [24] we have that the convergehce
in Hypothesis (3) is 0(-5)p for some p > 0, then the rate of convergence

in (3.1) will be 0(—)" + 06 )q for z € S.

Before we can proceed to apply the results of Theorem 3.1 in the
development of approximation schemes for the nonlinear system (2.4), we
must first consider the linear nonhdémogeneous problem. We shail require

the fullowing result from [24]. For f ¢ Lg(O,T) and zg € Z, let

z € €C([0,7],2) be given by

t
z(t) = S(t)z0 + j S {t-0) (f(0v),0)do
0

NYoN
and let { z } < Z._ be given by

k), o N

] x4 k-]
& AY R 2 + | SG A O AR, 0)

[ R aer by

X
N 3
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J f(o)do , D(z) is a rational function of the comblex

(=15

h|

win

where EN =

3

'nlz'

variable z and 0 < A <1,

Theorem 3.2  Suppose that Zﬁ, PN’ AN’ C(z) satisfy the hypotheses of

Theorem 3.1. Suppose further that
(1) The infinite collection of operators on ZN’

X kpN
{ C(ﬁ AN) } are uniformly bounded with respect to N

k=0
and )
(2) The operators D(Aﬁ-AN) exist for all N sufficently large and
satisfy lD(Xﬁ-AN)PNz-z| + 0 ag N > o for each z ¢ Z.
Then
Izﬁ - z(tg)ﬁ + 0
as N > ® for each g € Z uniformly in k, k = 0,1,2...0N and uniformly

in £ for f in bounded subsets of L;(O,T).

Several of Qur arguments below rely upon an application of the fqllowing
lemma. The result given in Lemma 3.1 is a discrete analog of the well known
generalized Gronwall differential inequality. Since we have bLeen unable to »
locate a suitable reference in the literature, a proof of the result has been
included.

Lemma 3.1 Suppose that {aj};;ﬂ and {Bj};;o are sequences of non-negative
real numbers and that {¢j};;0 is a sequence of real numbers which satisfy

n-1

o, s o + Y B

(o} n=1,2...
n k=0 kk

Then we have that
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nil nil
o s o + B.a,fexp( BN n=1,2...
noom e 33T oy K
If in addition aj =020 j=0,1,2 ... then
n-y—l
¢ =< oexp() B) n=1,2, ...
n k=0 k
n-1
Proof: Let s, = kZO Bkcbk n=1,2 ... Then

n-2
sn T Sp-1 7 Bn--l")n--lS 8 -1(0‘n—l + kZO Bk¢k) = fs1'1-]:(0‘:1—1 + Sn—l)

and therefore

S, < (1 + Bn-l)sn~1+811—lan-l .
This implies that
n-1 n=1 n-1
(3.2) s, S kgl 1+ Bk)sl + jzl kI=Ij+l (1 + BB,
n-1 n-1 n-1
= B QBB * 321 kgjﬂ (1+8,)B,0,
n-1 n-1
= jZO kgj-&l (1+Bk)8juj.
Now Bk 2 0 implies that (1 + Bk) < exp(Bk) k=1,2...n~1 and hence
n-1 n-1 n-1 n-1
s < jgo Bjaj(kgj{‘-lexp(ﬁk)) - jzo Bjaj(exp(k£j+l B))

from which we conclude that

. n-1 n-1 ‘
¢n s o ts < o + jgo Bjaj (exp(k§j+1 Bk)).

In the case that aj = 0, j=0,1,2..., (3.2) 4implies that
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n-1  n-1 a-1 n-1 n-1 :
snsu Z By T (1+8)=a I o(n (L+8) - T (1+8)
X =0 k=341 i =0 k=3 k=j+1
n-1
= o(( IIO Q+E)-Q+ B,-1))
n-1
< u((kgq exp(B)) ~ (L + B _,))
n-1
= a(exp(Z B) - (L+B _ ))
Therefore
n-1
$ Sats < a(l+exp(k§ B)-1-8_,)
n-1
=alexp( ) B) - B )
k=0
n-1

A

aexp( ) B).
k=0 k

For Z_, P , AN’ C(z), b(z) and pN as described above, z_ ¢ Z,

N N 0
u € Lm(O,T) and f satisfying hypotheses (H1) - (H4) we define the collection
N)P
N k-3

- = c(X r X N
(3.3) 2 = zk(zo,u) = o AN)‘H:NZ0 + £ Z c %) DO APRFS

k = 0,1,2...pn

-4

Ly N O
. F(O,Ziﬁl,u(o))dc = ('E j .
iy G-Dy

where FH =

o N
1 ﬁ{g,nlzi”l,wzzi_l,u(o))dc,o)

1R

< ePye

.
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Lemma 3.2 For ZN’ PN’ AN’ C(z), D(2) 4dnd Py satisfying the hypotheses
of Theorem 3.2 and u e E » a bounded subset of L;(O,T), the collection

NP Py N
{zk } ~ defined by (3.3) above are bounded in (¥ Z, || *||) uniformly
: 0

k=0
in N for all N sufficieantly large and uniformly in u-e¢ E where
ll{zﬂgpﬂ “N Z max 'ZNI

k k', °

k=0 o Oskspn

’ O
Proof Let KU denote the uniform bound on the operators {C( N) }
k=0

for all N sufficiently large which is assumed to exist in hypothesis (1)

of Theorem 3.2, and let Kl denote the uniform bound on the operators

b(A % AN) for all N sufficiently large whose existence can be argued using
hypothesis (2) of Thecrem 3.2 and the uniform boundedness principle. Then,

for k = 0,1,2...pN

.
2] s K ]z0| + L RK, j)j |1>NF§q

r

kN _
< Ko]zol + KoKy jZl er |£ (o, STz l,nzzj_l,u(a))]dc.

Applying the growth condition (G) satisfied by f, we find

-k
]z:l s Kylzg| + KoK, ) }f N (m (0) + 1, (0) [u(o) |} {
. j=1 (3=1
]ﬂ z ] + lwz 5e 1]} + IR(U)‘Iu(U)IdU
< K |z, | +K IBI lul
0'*0
2 *®0,1) LZ\O z)
P ix

N . N N 5
+ KK, 321 {lnlzj_l} + lnzzj_ll} J r(ml(c) + m,(0) {u(o) | do
-y
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-

< K |z.] + KK, |B]  ul +
S LY 01 gxm(o ) L;(O,T)
Py jﬁ i 3
vZ K K ¥ lzj ll J (& (0) + mz(c)lu(o) Ddo,
=1 x
j-lN

and hence by Lemma 3.1

2. | s (K |z | + KK, |B Ju] ) .
= Rl L0,1) 15(0,1)
T
exp (V2 KoKy J {ﬁl(a) + @,(0) [u(o) |do)
0
< (Rylz, !+K .18 ful ).

Ly ™0, 15(0,T)

llzlul ).

exp (V2 xoxl(]mlle + 1m2]LwT o
2 t

Theorem 3.3 For ZN? PN’ AN’ C(z), D(z) and bN - satisfying the
hypotheses of Theorem 3.2, u ¢ E , a bounded subset of L?(O,T),

p v
{ZE } N given by (3.3) , and =z given by (2.4) we have
7 k=0 .

N N
|zk(z0,u) - z(tk;zo,u)t +0

as N -+ » for each zO € Z uniformly in k, k = 0,1,2...0N and uniformly

in u for u e E.

Proof For =z e C([0,T],2), the unique colutica to (2.4) guaranteed to

exist by Lemma 2.1, and t ¢ [0,T] define the function h by

R(E) = h(t,0) = £(t,m z(t),mz(t),u(t)).
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~Then
t
z(t) = S(t)z0 + j S(t~0){h(c),0)do
: ,

and using hypotheses (H1)~(H4) it is easily verified that for u ¢ E,

p .
h 1lies in a bounded subset of L;(O,T). If we define {EE} N . ZN by
k=0

k
~N _ T k r r k-3, r N
B = CG AP Pz, t§ j-——z-lc(N Ap TInGg AN)PN(hj,O)

N_N tg
where hi =7 J h(o)do then it follows that
N
-1 A
N N N N -N N
lzk - z(tk)! < lzk - zk[ + izkm z(tk)i
N N
< Izk - z(tk)l +
K tz? X N
321 KoK, J |f(c,ulzj__l,1rzzj_l,u(c)) - £(0,7,2(0),7,2(0) ,u(0)) |do
= N
tj—l
=N N
= ;zk - z(tk)l +
k1 t‘N+1 N
7 okk, | Ir@o,2N,u0)) - F(o,200),u(0)) |do
50 071 Jy j
t
h |

where KO and Kl are as they were defined in the proof of Lemma 3.2,
Since {z(t;zo,u)ﬁtef[O,T],u € E} 1ies in a bounded subset of Z (see [2])
as does {z;i(zo,u), k = O,J.,Z...p'n uve E} uniformly in K for all N

sufficiently large, property (P2) implies
N N N N
(3.4) ]zk - z(ck)l < Izk - z(tk)l +

k-1 tg’ﬂ "
jz KoK, l“ M, (o) + Mz(o)lu(ﬁ)l)lzj - z(0) |do

3
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N o n
: k-1 ot
s |- () |+ KK, 7 J I 1,0 + 1,000 [u(o) -
j=0 tN .
h|
lz(t?) - z(0) |do
N
k-1 t
1
+ jzo KoKy JNj+ M, (o) + Mz(o)}u(o)l)do]z§ - z(t?)l,
t
3

Let € > 0 be given. Theorem 3.2 implies that !EE - z(tg)[ < € for

all N sufficiently large uniformly in k, k = 0,1,2.. and uniformly

.DN
in u for u e E. Furthermore by Theorem 3.2 of {[3], the operator
r:xg(o,T) + ¢([0,T],2) defined by
rt
F(E)(2) = 8(e)z, + J $(t-0) (£(0),0) do
0 .
is a compact affine operator. Since u € E , a bounded subset of
L;(O,T) implies h(+,u) 1lies in a bounded subset of Lg(O,T), it follows
that {z(-;zou):u'e E} 1is a relatively compact subset of C([O,T],Z)._
Therefore, the mappings t - z(t;zo,u), ue E  are uniformly equicontinuous
on [0,T] and |z(t) - 2(0) |<e,0 e|t), ¢}, | for all N sufficiently
k k’k+l ]
large uniformly in k, k = 0,1,2...0N and uniformly im u, u € E. The

above arguments together withithe inequalities given by (3.4) imply

. T
(3.5 Izi - z(tz){ < e(l + KK j (M, (0) + M, (0 {u(0) |)do)
0

N

k-1 St

+ ) KoK,y j i+ My (o) + Mz(c)]u(o)])do|z¥f~ z(t?)l

3=0 /N 3

h|
Tl/ziul )

< e(l + KOKlTIMl[L + KOKl!MZIL

Lo ] ] 2
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. N
k=1 t
+1 N N
4 jZO KOK1 Jnj (Ml(o) + Mz(o) lu(o) [)do!zj - z(r,j)(
t
3

for all N sufficiently large. I1f we now apply Lemma 3.1 to (3.5) it

then follows that

N
k-1 rt
lzg - z(tE)l < e(I+y)exp(K K, 420 JNJ+1 (M, (o) + Mz(c)lu(c){)dﬁ)
¥ t
3
T
< :*:(1+Y)exp(K0K1 J (Ml(C) + MZ(C) [u(o) |y do)
0

< e(lFexp(y)
for all N sufficiently large, where

-
Yy=KKTM]| +KK M| Tllzlu} and the theorem is proven.
01 "1 L 01"2 L L2
o] oo
NPN .
Corollary 3.1 For z) generated by an approximation scheme satisfving

k=0
the hypotheses of Theorem 3.3 it follows that

In, 2, ((,8),0) = x(rlin,é,w) | + 0

ag N+ uniformlx{in k, k= 0,1,2...pN and uniformly in ﬁ, uek

where x denotes the unique solution to the initial value problem (2.1)(2.2).

4. Construction of Convergent Approximation Schemes

In this section we construct approximation schemes which are based upon
the framework described in the previous section and which satisfy the hypotheses
of Theorem 3.3. Since the schemes described below and the verification of
the fact that they satisfv the hypotheses of Thecrem 3.3 have appeared else-

where ([2]1,041,[8],[24]), the relevant results arv outlined and the details
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Each of our approximation schemes is composed of two interrelated
components, the state discretization, as is characterized by the choice of

z Pn, and An’ and the temporal discretization which 1s determined by

N’
the rational functions C(z) and D(z). The interrelation which exists
between the two cowmponents is a4 consequence of the conditions under which
our fundamental convergence result, Theoremb3.3, applies. We begin with

a description of two state approximations and then discuss and characterize
families of rational functions which, when coupled with these state
approximations lead to convergent approximalion schemes.

The averaging state approximation (AVE), thé more primitive of the two
state approximations to be discussed is basod upon finite diffevence
approximations and is defined as follows. For each N = 1,7... let
x? j=1,2...8N denote the characteristic function on the interval
[-j%-,—(j—l)ﬁ) and let

N

o . b = N n
Zy = {(n,9) e 2: ¢ jzl ViXjs Vs € KL

We note that dim ZN = n(N + 1) and that the orthogonal (with respect to
thke standard Z inner producf) projections PN:Z hd ZN ar2 given by

N
p - N N
Pyn,9) = (n, j§1 9% )

- (-

where ¢ $(0)d06. It is not difficult to show that PNz + 2z

[
oz

r
_jN
as N > ® for each 2z € Z. Let the operators LN:ZN + R? and

)
DN.ZN -> Lz(—r,O) be given by
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N
Ly Z vaJ fon ¥ 121 jzl Apvyxy g
N
= A
B!
=(-1g
where A? = % A(0)de j = 1,2...N and
T
Y
N N .
N - N
Dy(m L vy b U TP

where vy =M respectively. Define AN:Z - ZH by

Ag(n,9) = (Ly(n,8),D(1,))

At
and for t 20 1let SN(t) = e N . A sequence of inmer products on

zZ, <',°>N , can be constructed for which there exismsan M > 0, independent

of N, such that
(4.1) luo [ = [m,e) | < Miin, ) |

for all (n,¢) € ZN . Furthermore, therg exists a f > 0 independent of
N , for all N sufficiently large for which the operators AH - PI are
maxamal dissipative with respect to the <',‘>N inner product on ZN'
It follows therefore that AN € G(M,B) and ]SN(t)] < % for a11 W
sufficiently large. 1t 1s in fact the case that-the\ AN as defined above

satisfy a somewhat stronger condition. It can be shown that there exist

an o > 0 for which

(4.2) I+RAN 51+
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apparent when we discuss the choice of the rational function component of
the approximation scheme below.

If we let Dl = D(Az) and D2 = D(A) then D, < D(A) 1is a dense

1

subset of Z and for all A € € with Re) > B,R(A;A)Dz =D Moreover,

1
it can be shown that fo: each z ¢ Dl

/2

Apyz - Az| = o2

as N > o,

We shall next describe a spline based state approximation. The dis-
cussions which follow will be restricted to constructions inrolving linear,
or first order spline functions, However, the results given below are easily
generalized so as to be applicable to state approximations employing higher

order spline functions. For each N = 1,2... and 8 ¢ [-r,0] 1let

N N

N
— (8~ t, ) t,. s 06<0
N 1 1
0q® =14 ©
0 otherwise
N N N N -
= (t - B) t <0<t
N -
NI I . =2
i n N N N B
- (6 - tj+l) t j41 S 6 s tJ 3=1,2.,..8 ~1
' Q otherwise
I N N .
v =1 ¢ Cwa” 2 e sty
l 0 otherwise
N r
where tj = - jﬁ j=0,1,2...8 and define ZN by

N
e Z: & = N v n
zy = 1(6(0),0) < 2: ¢ J_go vioy vy e R}
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It is immediately clear that dim Z_=r(N + 1), 2Z_c D(A) and 2

N N N
consists of all those elements (n,$) € Z for vhich n = ¢(0) aud ¢ is a

-

first crder spline function with knots at { t?}N . Let PN:Z > ZN
i=0

denote the orthogonal projection from Z onto 2Z computed with respecr

N
to the weighted inner product on 2, <°,'>g, defined in Sectica 2. Filually

‘we define the operators AN:ZN *Z, by

AN=PNA. ‘

Using the fact that the PN are orthogonal projections it follows from

(2.3) that for z € ZN

(4.3) <ANZN’ZN>g = <PN A ZN’ZN>g = <AzN,PNzN>g

= < > 4 w< >
AzN,zN 2 W<z, 2z, .

and hence that AN € G(/G;m). Furthermore, using the properties of inter-
polatory splines it is not difficult to show that PNz +2z as N+«

for each 2z € Z and that
(4.4) Az - Az] = o™

for each =z ¢ D1 = D(AB). If we choose D2 = D(Az) then all of the hypothese.
and conditions of Theorem 3.3 concerning the state approximation ouly hold

for the linear spline scheme defined above. We note that for state approxi-
maticns employing higher order spline functions the order of convergence

in (4.4) and therefore in the integration method itself (see Remark 3.1)

can be increased.

For either the AVE or spline based state approximationus. a rarion: .
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function C(zjwlsatisfying conditions of Theorem 3.1 must be chosen for
Awhich the operators {C(E-AN)Q}ZNO are uniformly bounded in N for all N
sufficiently large. 1t is clca:j from _ondition (5a3) that we are seeking
rational functién approximations to the exponential. While there are many
famiiies of approximating rational functions from which to choose, we have

restricted our attention to the well known Padé approximants [26] which

are given by ij(z) = Njk(z)/Djk(z) where

k
_ (G +k - i)kt i
(4.5) N (@) = i§0 G+HRilk-012
and
o (G + k- i)ty . 4
(4.6) Dy (=) Lo GFOIG-nr 2

It can be shown that

lj+k+1}

]ij(z) - e*] = 0(]z as J{zf + 0

gnd hence the Padé approximants satisfy condition {(5b) since deg ij(z) =
k=-3<k+3j+ 1, It is immediately clear from (4.5}, (4.6) that
{POk(z)}:;O are thLe Maclaurin polynomials for e” and therefore satisfy
éondition (5¢). Further.ore, Ehle [11], in his study of the use of the
Padé approximants in he construction of A-stable integration schemes for
stiff systemé of osd. xy differential equations has shown that for

z ¢ {zeC:Rez<0}
4.7 [ij(z){ s b j o= k,ktl, k+2 "
k= 0,1,2...

Consequently, from the standpoint of the constraint that condition 5 of

Thecrem 3.1 be satisfied; C(z) can be chosen from among the entries in
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the tgp row, the principal diagonal and the first two subdiagonals ef the
Padé table. However, the convergence of approximation schemes constructed
using these rational functions and the AVE or spline based state approxima-
tions defined above is guaranteed bf Theorem 3.3 only if the uniform

N

boundedness of the operators P, (= A )K can be demonstrated.
jk'N N 2=0

Using the von Neumann theory of spectral sets [22] and a result due

to Hersh and Kato [14] the following result cah be obtained.

Theorem 4.1 Let T be a bounded linear operator on a Hilbert space H
for which there exist a 8 >0  such that <Tx,x> <€ B<x,x> for all
x € H, and let r(z) be & rational function satisfying condition 5 of

Theorem 3.1. Then if {r(z)l €1 for all 2z ¢ {zeC:Rezs0} we have
r(nhT}| =< 1 + BKh

where K 1is a positive constant independent of h and T.
It follows immediately from the dissipative properties of the operators

AN defined as a part of the AVE state approximation, (4.1),(4.7), and

Theorem 4.1 that for j =k, k+1, k+ 2, k=1,2,... and 4L = O,l,2...pN

r. R

e EAD* sma + ek I)

Jk°N 1134
BK,

p L BK, T
£ Me kNN Me Ik .

Similarly, for the spline based state approximations it follows from (4.3)
that
wK, T

P, EAY | s B e &

T
jk('ﬁ

In addition, for the AVE state approximation which satisfies (4.2), it

can be shown independently of Theorem 4.1 that for 'k = 1,2... and
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[p AN)Rl < et .

Okeﬁ
Although; as far as the convergence.of thé‘approximation scheme is
concerned, it would suffice to choose D(z) =1, and hencev b(kﬁ AN) =
(see Theorem 3.2}, émpirical evidence can be given, and an intuitive
argument can be made for choosing D(z) as a rational function approxima-
tion to the exponential. It is easily verified that any rational function
approximation to the exponential which is a suitable choice for (¢(z) is
a suitable choice for D(z) as well. In addition, for the spline based
state approximations and k = 1,2... it can be shown that
lPOk(kgAAN)PNZ ~z| *0 as N -« for each z e Z. A more detailed
description of the role played by the rational function D{z) and its
effect upon the overall performance of the approximation scheme can be .
found in [24].

The results in this section are summarized in the following theorem.

Theorem 4.2 For {ZN’PN“AN C(z),D(z)} an approximation scheme for the
initial value problem (2.1)(2.2), the hypotheses and comditions of Theorem

3.3 are satisfied if

(1) ZN’ PN’ AN is an AVE state approximation and
¢ (2),D(2) eE?%UJé%
or

(2) ZN’ PN’ AN' is a spline based state approximation, C(z) € E?p

and D(z) ¢ E@budgp

where % = {ij(z)} j = k,k+1,k+2, k = 1,2... and ﬁp = {POk(z)} k=1,2... .
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5. Application to Optimal Control Problems

In this section we consider the application of the approximation
results discussed above to the solution of optimal control problems in
which the state is governed by a .nonlineér hereditary syétem of the
form (Z.l)f In particular let ¢1:Rn > R{¢2:LE(O,T) -+ R; be continuous
and let ¢3:L?(O,T) d Rl be continuous and convex. Let U be a closed

convex subset of L?(O,T) and define problem (P) as follows

P
Minimize Q(u)»= ¢; (x(T5n,0,u)) +
by (x(+5n,9,0)) + ¢,41(w)

over all u e U where x(+;n,0,u) denotés the uniéue solution to

(2.1),(2.2) corresponding to u e U. >
The approach we take is to consider a sequence of approximating optimal
control problems {(PNj} ,in each of which the governing state equation is
a finite dimensional discrete difference equation constructed in accordance
with the approximation framework developed in Section 3. Let
{ZN,PN,AN,C(Z),D(Z)} be an approximation scheme for (2.1)(2.2)v;which
satisfies the hypotheses of Theorem 3.3 and for zg = (M9, ue L?(O,T)

and k = 0,1,2...0N let

N . N N
zk(zo,u) = (xk(zo,u),yk(zo.u))

Y
where {ZE(ZQ’U)} N are given by (3.3) with xg(zo,u) € " and
k<0
N
yﬁ(zo,u) € LE(O,T). Define x ¢ L?(O,T) by
PN
N
Ko = K om,0w = ) AEgwx L (®
j=0 [j§3(1+1)§)
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T

and for each N = 1,2... let problem (PN) be given by

(P

Minimize @N(u) = ¢i(xgn(zo,u)) f o
6y Ge (+3m,0,0)) + dy(w)

over all u e U.

Remark 5.1 While it is true that for each N»= 1,2... problem (PN)
is not fully discrete in that the minimization of ¢ 1is being considered
over a function space, it is in fact possible to define the problem in a

form which is directly suitable for solution on the computer. Indeed, if

pN"l
we consider the minimization over the uet UN = QNU < x Rm where
py-1 0
QN:L,‘;(O,T) + x R® 1is defined by '
0
111
J+1N
N N
(QNu)j =-; J u(t)dt j=0,1,2...0 -1,
r
jN

then by placing relatively minor restrictions on the choice of the set U,
all of the convergence results for the solutions to the sequence of problems
{(Pﬁ)} to be discussed below can be shown to hold for the fully discreté
problems as well., In order to simplify the presentation, however, we shall
restrict our attention to the approximating problems as giwen.

It is our ultimate goal to demonstrate that in some sense, solutilons
to problem (PN) approximate solutions to problem (P). However before
this can be accomplished, the existence of solutions to problems (P) and
(PN) must be considered. In order to insure the convexity of ¢ andA

¢N' with respect to u it is necessary that we restrict £ , the nonlinear
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part of the state equation to be affine in the contrsls. Following
. . . Jlon.n, _ .._.m n
Banks [2], henceforth we shall assume that f£:R xR xLz(—r,O)XR + R

is of the form

(5.1) f(t,n,0,v) = fl(t,n,¢) + (fz(t,n,¢) + B(t))v
where B 1s continuous and fl:RlXRnXLg(-r,O) +R" and
fZ:RlXRpXLg(-r,O) + gV satisfy the following hypotheses.

(1) The mappings (t,n,¢) fi(t,ﬂ,@ ) i=1,2

are continuous on Rlanng(-r,O).

~ (2) - For any bounded -subset D - of RnXL;(~r,O)

loc :
there exist m = mi(v), m, € L i = 1,2 such
that for t ¢ R1 and (n,¢9), (&,9) ¢ P one has

[£(£am,9) = £,(6,8,0) | < m () {n-E] + [¢- ]}

(3) For i=1,2, fi(t,0,0) = 0 and there exist functions
1

2~

o, e Li?c such that for t ¢ R

£, om0 | < &, (&) {Inl+o1}
for (n,9) ¢ R“XLg(-r,O) with lnl + l¢l sufficiently large. i1t is
immediately clear tnat any function £ of the form (5.1) satisfying
(1) -~ (3) above will also satisfy hypntheses (H1)~-(H4).
In addition, it is necessary that we make either ome or the other of

the following two assumptions
(Al) The set U is bounded

(A2) The mappings ¢ i=1,2,3 satisfy
i
(1) ¢, 20 i=1,2

(1)  ¢,u) =  if |u|l + = .
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We note that problem (P) 1is most commonly stated with U = L?(O,T)

and % a quadratic of the form

(5.2)  F{w = x(e3n,0,0) GX(Tin,0,u) +
T T
J X(s;n,¢,u)TQX(s;n,¢,u)ds +I B(S)TRu(s)ds
0

where G and Q are positive semi-definite nxn matrvices and R 1s a

positive definite mm matrix. In this case, assumption (A2) holds.

Lemma 5.1 For f of the form (5.1) satisfying hypotheses (1)-(3),

2, € Z and u *u weakly in L?(O,T) we have

(5.3) ;lz(t;zo,uk) - z(t;zo,u)l + 0

as L > = unpiformly in t for t ¢ [0,T] and for N = 1,2... fixed we have
N N

(5.4) 1zk(z0,u9v) - zk(zo,u)( +0

as & -+ uniformly in k for k = 0,1,2...p where z(t;zo,u) and
ZE(ZO"U) are given by (2.4) aund (3.3) respectively.
The proof of (5.3) follows from Theorem 3.2 of [2] while similar

arguments and Lemma 3.1 can be used to verify (5.4).

Corollary 5.1 Under the hypotheses of Lemma 5.1, if {uN} i3 a sequence

in L?(O,T) for which Uy <+ u weakly then
N; ) N .
’zk(zo,uN) - z(tk,zo,U)[ + 0

as N -+« uniformly in k;, k = 0,1,2...pN.
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Proof Since
N : N
(5.5) Iz (zgou) = z(r52q,u) |

‘zg(zo’“m) - 2(t§;zo.un)l + IZ(tg;ZO,uN) - Z(tz;zo,u)l

and uy + u weakly implies that {UN} lies in a bounded subset of
L?(O,T), the first term on the right hand side of (5.5) tends toward
zero as N + o uniformly in k, k = 0,1,2...pN as a consequence of

Theorem 3.3 while Lemma 5.1 insures that the second term tends toward

zero in the stated manner as well.

Theorenm 5.1 If either assumption (Al) or (A2) hold and £ is of
the form (5.1) satisfying hypotheses (1)-~(3) then problems (P) and

(PN) have solutions.

Proof Lemﬁa 5.1, ¢1 continuous, 1 = 1,2,3 and ¢3 convex imply that
¢ and @N are weakly semi-continuous from below. Therefore, if U 1is.
bounded, ¢ and @N will assume their infimum on U (see [19] Existence
Theorem, page 90) and the theorem is proven.

On the other hand, suppose Assumption (A2) holds, and let {ui}eil
be such that

¢(ui) > o= ipf{¢(u)ner}.

Note that ¢i > O’ i=1,2,3 implies that 0 s & < », Since U 1is
closed and convex (and therefore weakly sequentially closed) and {ui}
is bounded (Asgumptioﬁ (A2)), {ui} must contain a weakly convergent sub-

sequence {ui.}, u, > U € U, weakly. However, & weakly semi-continuous

3 3
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from below implies that

a < ®(u) S 1im inf .(1>(u1.) = q ,
j .

and hence ¢@) = a , and u is a solutiqn to problem (P). A similar

argument may be used to demonstrate the existence of a solution EN e U

to problem (PN).

Theorem 5.2  Suppose that the hypotheses of Theorem 5.1 hold and for each

N = 1,2...,uN denotes a solution to problem (PN)' Then {;N} contains a
subsequence {u, } for which u
Ny N
solution to problem (P) and @N (GN ) =+ ¢(G) as k + =™,
k 'k

+u e U weakly. Moreover, u 1is a

Proof Under either assumption (Al} or (A2) the sequence {;N} is

bounded. It therefore must contain a weakly convergent subsequence {EN }.
T
If ueU is such that GN + u weakly as k + « (hen Corollary 3.1,
k

Corollary 5.1 and the weak semi-continuity from below of ¢3 (it being

continuous and convex) imply that
®(u) = ¢, (X(T5n,0,u)) + ¢y (x(+5n,0,u)) + ¢4(R)

s lim ¢1(x§N((n,¢)’GNk)) +

N -
1im ¢2(X (';ﬂa(b)uN b))
k- 00 k

k

+ lim inf ¢ (u, )
k 378,

e g v}

= lim inf ¢., W, , < lim sup oy (GN )
A

koo k% Ko k Yk

IA

lim sup qiN (u) = lim gy (u) = ®(u)
koo k koo 'k

for arbitrary u € U, and hence that u is a solution to problem ).

‘ The fact that @N (GN ) > ¢(u) as k * « follows from

kK 'k
®(u) < 1im inf & (U, ) < lim sup O, (U, )
ko N N0 o N My

< lim sup &, (u) = lim &, (W) = d(w).
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Remark Since it is difficult to determine the convexity properties of the
functional ¢ it is not possible to say anything about the uniqueness'of
solutions to problem (P). However, if in fact problem (P) has a unique

solution, then the sequence itself, {GN} will converge to u weakly as

N > o,

Remark If & 4is of the form (5.2) then it is possible to show that

N u strongly as k + ®, Once
k

again.if problem (P) admits a unique solution u, then GN +u strongly

i;N | -"GI as well, and hence that u
k
as N + o,

6. Analysis of Numerical Results

In this section we present numerical results obtained through the
implementation of the approximation schemes described above. The schenes
employed have been constructed using the AVE and spiine based (SPL) state
approximations together with the Padé rational function approximations to
the exponential. In all of the examples below, however, we have chosen
C(z) = D(z) = Pzz(z) and A =-% . The effect of varying the choige of the
rational function components of the approximation scheme (from among those
in the Padé table for which the hypotheses of Theorem 3.3 are satisfied)
was studied extgnsively_in [24]7.

We have included one example involving the integration of an initial
value problem of the form (2.1)(2.2) only and three othér examples which
involve the solution of an optimal control problem of the form given by
problem (P) 1in Section 5. We have deliberately chosen to include examples
which have been used by other authors to test other approximation schemes

for the integration of FDE and the solution of FDE control problems so that
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our methods can Le compared to theirs. The other places where each evsuple
has appearea has been so noted.

All programming was done in FORTRAN and implemented on the Digital
Equipment Corporation DEC system 10 computer at Bowdoin College. The
optimization in each of the approximating problems (PN) was carried out
using the IMSL [15] routine ZXMIN, an iterative quasi-Newton algorithm
for finding the minimum of a scalar valued function of several variables.
The discretization of the admissible control space U in the approximating
optimal control problems (PN) was dqne in two different ways. One involved
the use of the space UN =!qum as an approximation to L?(O,T) (sce
Remark 5.1). In this case the number of parameters over which the minimi-
zation takes place increases with the degree of approximation N. The
second approach was to minimize over the space ﬁ = i R™ where L. is a fixed
constant independent of N. A cubic spline interpolgtion scheme was then
used to obtain the values of the control which are required to evaluate
(3.3). The approximate solutions resulting from the two methods were _
virtually indistinguishable. However, the number of iterations required
to obtain the'minimizing control increased like OQ(N) for the first method;
while the iteration count remained essentially conétant for all values of
, N for the second method.

Since, with the exception of Example 6.2 which has a linear state
equation, it 1is imposéible to obtain exact solutions to the optlmal control
problems below, we have included approximate solutions which were obtained
using methods independent from our own. These alternate approximate
solutions, which can be used for comparision, were computed by Daniel [10]

using a fourth order integration scheme for FDE developed by Tavernini [25]

to solve the mixed retaraed/advanced two point boundary value problem which
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Example 6.1  (Banks [2], Example 4.1)

We considew fhe integration of the equation
x(t) = -1.5x(t) - 1.25x(t~1) + x(t)sinx(t)
on the interval 0 S t £ 5 with initial data

x(0) = 1 xo(s) = 10s + 1 -1 <850

The approximate solutions generated by the AVE and SPL state approximaticns
are given in Tables 6.1 and 6.2 respectively. The values in the last column
of each of the tables were computed using the method of steps [12] toge cher

with a fourth order Runge-Kutta routine for ordinary differential equations

and may be used for comparison purposes.

e | KD T (E) xer(t) xoE(E) x(t)
0.0 | 1.0 1.0 1.0 1.0 1.0

.5 | 3.0954 3.1924 3.2531 3.2840 3.3142
1.0 | 2.1375 2.2051 | 2.2522 2.2841 2.3317
1.5 | L9759 L7151 .5163 .3877 .2294
2.0 |~ .2258 6233 | - .8116 | - .9020 - .9909
2.5 |~ .5984 | - .3920 | - .7221 | - .7331 - . 7399
3.0 |- .3801 2599 | - .1715 | - .1073 - . 0245
3.5 |- .0573 .1091 .2409 .3251 4259
4.0 .1024 .2389 .3244 .3711 .4195
4.5 | 1.2229 .1598 .1532 .1370 .1081
5.0 | .0634 0150 | - .o469 | - .0019 - .1480

Table 6.1
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) SPL SPL SPL SPL

t X, (t) Xg (t) X1 (t) X39 (£) §(t)
0.0 1.0038 1.0010 1.0003 1.9001 1.0

5 3.5036 3.3623 3.3344 3.3236 3.3142
1.0. 2.1694 2.2636 2.2992 2.3157 2.3317
1.5 .3642 .2834 .2538 . 2405 .2294
2.0 -1.0308 - 9972 - .9929 - .9919 - .9909
2.5 - 7248 ~ ,7332 - ,7345 - ,7367 - .7399
3.0 - 0612 -~ .0218 - .0188 -~ .0205 ~ 0245
3.5 . 4055 . 4166 L4230 L4251 L4259
4.0 .4180 4145 L4157 L4173 L4195
4.5 .1572 .1187 .1099 . 1081 . 1081
5.0 ~ 13124 -~ .1391 - .1454 - 1473 - 1480 }

3
Table 6.2
Example 6.2 (Banks, Burns, Cliff [5], Example C7, Rockey [23], Test Problem 5.6)

In this example we consider an optimal control problem whose state

equation is a linear harmonic oscillator with delayed damping.
1

2
Minimize ®(u) = 5y(2)2 +~z j u(s)zds
0

over ue U= Lé(O,Z) subject to
(6.1) Y(t) + y(t-1) + y(t) = u(r)

with Initial condizions

L]

(6.2) y(0) =10  y(s) =10 -l1ss50

]

(6.3) y(0) ] §0(s) = 0 -1

A
@

IA
<

For this problem, the truz optimal control u may be computed, and is given
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& sin(2-t) +-§ (1-t)sin(t-1) 0Osts1

u(t) =

8 sin(2~t) lsts<2

where 6 % 2.5599, with ®&(3) = 3.3991. This example may be put in the

form of problem (P) by trarsforming (6.1)(6.2)(6.3) into an equivalent

first order gsystem, which is given by
sy _ 01 0 0] _,. _ 0
x(t) = Ll 0| ®(t) + !;: -J] x({t-1) + [J u{t)
10 | i
) e [7]

E(t-)] . The payolf functional € would now take
y(c)

?] x(2) +

Tables 6.3 and 6.4 contain the resulting approximatipryg optimal controls.

(]

x{(0)

~-1£s8<9

where x(t)

the form

A

2
J u(s) 2ds .
0

®(u) = x1(2) g

+
e | ute | e | o | B a(e}
0.0 | 1.2757 1.2797 1.2746 1.2336 1.2506
25| 1.4515 1.6358 1.7463 1.8024 1.3645
.50 1.7195 | 1.9506 2.0888 2.1706 2.2467
75| 1.8076 2.0427 | 2.1827 2.2642 2.3501
1.00| 1.7070 3.9094 2.0263 2.0911 2.1561
1.25| 1.4333 1.3844 1.6641 1.7075 1.7449
1.50 | 1.0255 1.1216 1.1718 1.2018 1.2273
1.75| .5324 5794 6043 6164 6333
2.0 .2708 L1473 n774 Anan -
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_SPL _SPL SPL " SPL -
t G, (t) g (t) 0 (t) T3y (t) ()
0.0 | 1.6887 1.4468 1.3456 1.2776 | - 1.2506
.25 1.9415 1.8856 1.8748 1.8686 | 1.8645
.50 | 2.3024 2.2635 2.2553 2.2501 2,2467
751 2.3675 2.3570 2.3583 '2,3521 2.3501
1.00| 2.1634 2.1573 2.1482 2,1539 2.1541
1.25] 1.7592 1.7489 | 1.7458 | 1.7443 | 1.7449
1.50| 1.2238 1.2269 1.2261 01,2276 | 1.2273
1.75 .61496 .6301 .6285 .6339 .6333
2.0 .2999 .1548 .0798 .0392 0.000
0 (Ty)| 3.5664 3.4438 3.411 3.4021 3.3991
Table 6.4

Example 6.3  (Banks [Zj, Example 4.4, Banks, Burns, Cliff [5], Example C11,
Daniel [10], Example 4.5, Rockey [23], Test Problem 5.10)
in this example we consider an optimal control problem with a one
dimensional nonlinear state equation
2
Minimize ¢(u) = % x(2)2 +-% J x(s)2 + u(s)zds
0

1
over u € Lé(O,Z) subject to

x(t) = x(t-1) +.x(t) sin x(t) + u(t)

with initial conditions given by

A
o
A

-10s - %
x(0) = 0 xo(s) =
10(s+1) -1

iA
(9
A

S )

The approximating minimizing controls for the AVE and SPL state approxi-
mations are given in Tables 6.5 and 6.6 respectively while Tables 6.7 and

6.8 contain the corresponding optimal trajectories.
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_aVE, | | -AvE _AVE _AVE .

t , () U {(t) Sg {t) Uy (t) ale)
0.0 | -2.1967 -2.2417 -2.2681 -2.2817 -2.3028
.25 ] -2.0860 -2.1699 -2.2295 | -2.2662 -2.3164
.50 | -1.8082 ~1.9655 -2.0971 -2.1893 -2.3189
.75 | -1.46C5 -1.5635 -1.6386 ~1.6853 -1.7470
1,00 | -1.1242 -1.1470 -1.1443 -1.1333 -1.1031
1.25] - .8467 - .8273 - 7972 ~ (7747 - .7483
1.50 | - .6332 - .6072 - .5838 -~ .5708 - .5619
1.75 | - .4665 - L4484 - .4376 - L4349 - 4440
2.0 |- .3921 - 3477 - .3282 - .3223 - .3230

0 ()| 1.9914 2.1673 2.3020 2.3953
Table 6.5
-SPL _SPL SPL _SPL -

t a, () g (t) Ue (t) U3y t) a(t)
0.0 |-2.2389 ~2.2372 ~2.2596 ~2.2741 ~2.3028
.25 | -2.3139 -2.3019 -2.3023 -2.3041 -2.3164
.50 | -2.1999 -2.2596 -2.2908 -2.3022 -2.3189
.75 | -1.6929 -1.7129 -1.7295 ~1.7364 ~1.7470
1.00 | -1.1384 -1.1198 -1.1117 -1.1070 ~1.1031
1.25| - .7830 - 7702 - .7610 - .7569 -~ 7483
1.50 | - .6151 - .587%4 - 5749 - .5682 - .5619
1.75 ] - .5032 ~ 4543 - L4531 - 4469 AR
2.0 |- .4617 - .3676 - .3461 - .3351 - .3230

by () 2.5119 2.4996 2.5103 2.5133

Table 6.6
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I AN %o (e §§Zﬁ(c) ) 7(t)
0.0 | 0.0 0.0 0.0 0.0 0.0
.25 - .0087 - .1034 - .1672 - .2051 - 2473
.50] L1537 L1434 1357 .1271 .1078
75| L2757 .3540 L4329 .4931 .5663
1.00] .3282 .4199 .5009 .5562 .6186
1.25)  .3368 .3901 .4182 .4259 L4127
1501 L3314 .3393 .3233 .3006 L2474
1.75]  .3337 .3139 .2886 2687 .2272
2.00| .3486 .3264 .3165 .3159 .3053
Table 6.7
e | oEm | osghe | s | ko %(t)
0.0 |- .003¢ | - .0010 | - .0003 | - .o001 0.0
25| - .2538 | - .2415 | - .2425 | - .2440 - .2473
50| L1721 | .1259 .1155 L1136 .1078
75| .6048 .5994 .5749 .5737 .5663
1.00| .6607 .6234 .6257 .6278 .6186
1.25| L4115 L4222 .4222 L4231 4127
1.50| .2005 .2599 .2665 .2629 L2474
1.75] .2398 .2617 .2494 .2456 .2272
2.0 L4021 .3485 .3359 .3282 .3053

Table 6.8
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Exanple 6.4 (Daniel (101, Example 4.2)

In this example we consider an inertial control problem (see [9])

. g -
Minimize &(u) = % y(Z)f2 +-% j ﬁ(s)zds
1, o
over ue U= {ue Hl(O,Z):u(O)=f0} subject to

5(6) = y(e-1) + 3 tsiny (6) + wlo)

with initial conditions
y(0) =1 yo(s) = 1 -1ss<0.

Although this example is not in the form of problem (P) it can be trans-
formed into an equivalent optimal control problem to which the theory

developed above applies. If we let

y(t) . .
x(t) = , v(t) = u(t)
u(t)

then the problem becomes

Minimize ¢(v) = x(2)T x(2)

(=B XY

2
J v(s)zds

0

(Y=

over VvV e L; (0,2) subject to

. ' 0‘ L {:1 Ot] %-tzsin xl(t)
x(t) = x{t) + x(t-1) +
0 0 0 0 v(t)

with initial conditions

. 1T rl
x(0) = xo(s) = -1 <8590
0 : Lo :
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The approximating optimal controls @ are given in Tables 6.9

N Gy
" and 6.10, and the corresponding optimal trajectories ?N = (&N)l are‘given

in Tables 6.11 and 6.12.

~AVE ~AVE ~AVE - ~AVE -

t u, (t) ug (t) U (t) Usy (t) u(e)

0.0 0.0 0.0 0.0 0.0 0.0
.25 - 6687 - .6836 - .6870 - .6880 - .6858
.50 —1,2308 ~1.2329 -1.2332 -1.2336 -1.2291
.75 -1.6634 -1.6569 -1.6555 ~1.6558 ~1.6494
1.00 -1.9840 -1.9723 -1.9707 -1.9714 -1.9645
1.25 -2.2083 -2.1937 ~2.1932 ~-2.1950 ~2.1891
.50 ¢ -2.3520 ~2.3349 -2.3352 -2.3382 -2.3332
1.75 -2.4293 -2.4095 -2.4098 -2.4132 ~2.4087
2.00 -2.4644 ~-2.4342 -2.4320 ~2.4349 ~2.4303

¢N(EN) 2.5484 2.4804 2.4617 2.4570
Table 6.9
~.SPL ~SPL -.SPL _.SPL -

t 4, (v) Ug (t) Uje (t) 3, (t) u(e)

0.0 0.0 0.0 0.0 ' 0.0 0.0
25 -~ .6491 - .6799 - 6860 - .6877 - ,6858
.50 -1.2161.§ -1.2282 -1.2319 -1.2331 ~1.2291
.75 -1.6506 -1.6524 -1.6539 -1.6553 ~1.6494
1.00 ~-1.9727 -1.96Y2 -1.9699 -1.9716 -1.9645
1.25 ~2.2070 ~-2.1657 -2.1250 ~2.1966 -2.1891
1.50 -2.3639 -2.3436 -2.3404 -2.3411 -2.3332
1.75 -2.4483 ~2.4207 ~2.4157 -2.4167 -2.4087
2.00 -2.4816 -2.4447 ~2.4382 ~2.4388 -2.4303

¢&(GN) " 2.5826 2.4986 2.4719 2.4624

Table 6.10
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IR A g (t) | ®em | xEm ()
0.0 | 1.0000 1.0000 1.0000 1.0000 1.0000
.25] 1.1698- 1.1654 1.1638 1.1633 1.1636
.50 | 1.2019 1.1911 1.1881 1.1873 1.1889
75| 1.1454 1.1273 1.1213 1.1193 1.1228
1.00| 1.0462 1.0208 1.0095 1.0034 1.0041
1.25] .9371 .9066 .8919 .8835 .8862
1.50] .8376 .8031 .7878 . 7805 .7927
1.75|  .7590 .7178 .7008 .6932 .7167
2.00| .7103 6561 .6315 .6195 6564

Table 6.11

e | 5w 5 () | RS (E) %501 (6) %(t)
0.0 | 1.c000 1.0000 1.0000 1.0000 1.0000
.25| 1.1703 1.1662 1.1639 1.1633 1.1636
.50 | 1.2102 1.1932 1.1887 1.1875 1.1889
.75 1.1500 1.1279 1.1214 1.1195 1.1228
“h.oo| 1.0418 1.0111 1.0017 .9984 1.0041
h.2s| L9340 8944 .8824 8775 .8862
1.50 |  .8507 .8055 .7875 .7799 .7927
1.75|  .7949 .7332 .7084 .6968 .7162
2.00|  .7674 .6820 L6440 .6252 6564

Table 6.12

Based upon the examples presented here, and several others which we

have looked at, the following observations can .be made.
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.The schemes which we have‘proposéd represent feasible and relativelj

efficient approximation methods for solving certain classes of non-

linear hereditary control problems,

Since the rééultiﬁg approximatiﬁg problems are governed by discrete
difference equations the programming required is relatively simple,
Moreover, since no additional discretization is necessary when the
schemes are implemented on the computer, no further stabiiity
analysis is required in order to guarantee convergence of the

approximating solutions.

The spline based schemes, although somewhat moré difficult to
program and costlier to run, out-perform the averaging schemes.
However, tne difference appears to be more pronovnced in the case
of simple integration of initial value problems as opposed to the

solution of optimal control problems.

The accuracy of the approximating optimal controls and trajectories
is quite good even for relatively small values of N ., This is
especially true for the schemes employing the spline based state

approximation.

Our results are comparable to those obtained by Rockey [25] and
to those obtained via the semi-discrete schemes developed by

Banks [2] [5] and Daniel [10].
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Wé have also appliéd our schemes to the design of an open loop
controller for the mach number - guide vane angle cqntrol’loop of ﬁhe
National Transonic Wind Tunnel Facility (NTF) at the NASA Langley Research
Center in.Hampton, Virginia (see [1],[101). Although the operation of the
NTF is best described by a complex system of nonlinear partial differential
equations, the dynamics of the system near stéady state operating conditions
can be modeled by a linear hereditary system in which éither the guide
vane angle actuator, or the guide vane angle actuator rate act as a control.
If we assume that a disturbance has cccuyred at time t = 0 , the problem
is to choose the control so as to drive the system back to equilibrium
as quickly as possible without exceeding the physical limitations §f the
components of the éystem. This leads to a linear quadratic optimal control
problem in which the dynamics are governed by a lirear FDE of the form (2.1)
with f£(t,n,$,u) = Bu. While an approximation to the closed loop solution
to this problem (in the form of approximating feedback gains matrices) would
be more desirable (and is accessable tﬁrough the techniques discussed in
.[7] [13] and [20]) we have gene;ated approximgting*ppen loop solutions
using the schemes developed above, This permitted us to test our methods
on systems of higher dimension (n = 3 and 4) with the optimization being
carried out over an extended time interval (T = 30). Both the averaging
and spline based state approximations were employed with values of N as
large as 24. We compared our results to the open loop solutions to this
proBlem which appear in [10] and to the open loop form of the closed loop
solutions computed in [1} and [7]. Our schemes performed comparably, both
qualatatively and quantatatively, and provided acceptable approximating

solutions for all values of N 2 4.
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